17 research outputs found

    Label-free imaging by stimulated parametric emission microscopy reveals a difference in hemoglobin distribution between live and fixed erythrocytes

    Full text link
    Hieu M. Dang, Gen Omura, Toshiyuki Omano, Masatomo Yamagiwa, Shin'ichiro Kajiyama, Yasuyuki Ozeki, Kazuyoshi Itoh, and Kiichi Fukui "Label-free imaging by stimulated parametric emission microscopy reveals a difference in hemoglobin distribution between live and fixed erythrocytes," Journal of Biomedical Optics 14(4), 040506 (1 July 2009). https://doi.org/10.1117/1.320715

    Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer

    Full text link
    Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.e., synthetic wavelength DH, can expand the axial range up to a few tens of microns, this method is still insufficient for practical applications. In this article, a tunable external cavity laser diode phase-locked to an optical frequency comb, namely, an optical-comb-referenced frequency synthesizer, is effectively used for multiple synthetic wavelengths within the range of 32 um to 1.20 m. A multiple cascade link of the phase images among an optical wavelength (= 1.520 um) and 5 different synthetic wavelengths (= 32.39 um, 99.98 um, 400.0 um, 1003 um, and 4021 um) enables the shape measurement of a reflective millimeter-sized stepped surface with the axial resolution of 34 nm. The axial dynamic range, defined as the ratio of the maximum axial range (= 0.60 m) to the axial resolution (= 34 nm), achieves 1.7*10^8, which is much larger than that of previous synthetic wavelength DH. Such a wide axial dynamic range capability will further expand the application field of DH for large objects with meter dimensions.Comment: 19 pages, 7 figure

    Visualization of internal structure and internal stress in visibly opaque objects using full-field phase-shifting terahertz digital holography

    Get PDF
    We construct a full-field phase-shifting terahertz digital holography (PS-THz-DH) system by use of a THz quantum cascade laser and an uncooled, 2D micro-bolometer array. The PS-THz-DH enables us to separate the necessary diffraction-order image from unnecessary diffraction-order images without the need for spatial Fourier filtering, leading to suppress the decrease of spatial resolution. 3D shape of a visibly opaque object is visualized with a sub-millimeter lateral resolution and a sub-μm axial resolution. Also, the digital focusing of amplitude image enables the visualization of internal structure with the millimeter-order axial selectivity. Furthermore, the internal stress distribution of an externally compressed object is visualized from the phase image. The demonstrated results imply a possibility for non-destructive inspection of visibly opaque non-metal materials

    Improvement of dynamic range and repeatability in refractive-index-sensing optical comb by combination of saturable-absorber-mirror mode-locking with intracavity multi-mode interference fiber sensor

    Get PDF
    Mode-locked fiber comb equipped with multi-mode-interference fiber sensor functions as high-precision refractive-index (RI) sensor benefitting from precise radio-frequency measurement. However, its dynamic range and repeatability are hampered by inherent characteristics in nonlinear-polarization-rotation mode-locking oscillation. In this article, we introduce saturable-absorber-mirror mode-locking for RI sensing with wide dynamic range and high repeatability. While the RI dynamic range was expanded to 41.4 dB due to high robustness to cavity disturbance, self-starting capability without the need for polarization control improves the RI sensing repeatability to 1.10×10-8 every mode-locking activation. Improved dynamic range and repeatability will be useful for enhanced performance of RI sensing

    Refractive index sensing with temperature compensation by a multimode-interference fiber-based optical frequency comb sensing cavity

    Get PDF
    We proposed a refractive index (RI) sensing method with temperature compensation by using an optical frequency comb (OFC) sensing cavity including a multimode-interference (MMI) fiber, namely, the MMI-OFC sensing cavity. The MMI-OFC sensing cavity enables simultaneous measurement of material-dependent RI and sample temperature by decoding from the comb spacing frequency shift and the wavelength shift of the OFC. We realized the simultaneous and continuous measurement of RI-related concentration of a liquid sample and its temperature with precisions of 1.6 × 10−4 RIU and 0.08 °C. The proposed method would be a useful means for the various applications based on RI sensing

    Refractive-index-sensing optical comb based on photonic radio-frequency conversion with intracavity multi-mode interference fiber sensor

    Get PDF
    Optical frequency combs (OFCs) have attracted attention as optical frequency rulers due to their tooth-like discrete spectra together with their inherent mode-locking nature and phase-locking control to a frequency standard. Based on this concept, their applications until now have been demonstrated in the fields of optical frequency metrology. However, if the utility of OFCs can be further expanded beyond their application by exploiting new aspects of OFCs, this will lead to new developments in optical metrology and instrumentation. Here, we report a fiber sensing application of OFCs based on a coherent link between the optical and radio frequencies, enabling high-precision refractive index measurement based on frequency measurement in radio-frequency (RF) region. Our technique encodes a refractive index change of a liquid sample into a repetition frequency of OFC by a combination of an intracavity multi-mode-interference fiber sensor and wavelength dispersion of a cavity fiber. Then, the change in refractive index is read out by measuring the repetition frequency in RF region based on a frequency standard. Use of an OFC as a photonic RF converter will lead to the development of new applications in high-precision fiber sensing with the help of functional fiber sensors and precise RF measurement

    Multicascade-linked synthetic wavelength digital holography using an optical-comb-referenced frequency synthesizer

    Get PDF
    Digital holography (DH) is a promising method for non-contact surface topography because the reconstructed phase image can visualize the nanometer unevenness in a sample. However, the axial range of this method is limited to the range of the optical wavelength due to the phase wrapping ambiguity. Although the use of two different wavelengths of light and the resulting synthetic wavelength, i.e., synthetic wavelength DH, can expand the axial range up to several hundreds of millimeters, its axial precision does not reach sub-micrometer. In this article, we constructed a tunable external cavity laser diode phase-locked to an optical frequency comb, namely, an optical-comb-referenced frequency synthesizer, enabling us to generate multiple synthetic wavelengths within the range of 32 μm to 1.20 m. A multiple cascade link of the phase images among an optical wavelength ( = 1.520 μm) and 5 different synthetic wavelengths ( = 32.39 μm, 99.98 μm, 400.0 μm, 1003 μm, and 4021 μm) enables the shape measurement of a reflective millimeter-sized stepped surface with the axial resolution of 34 nm. The axial dynamic range, defined as the ratio of the axial range ( = 2.0 mm) to the axial resolution ( = 34 nm), achieves 5.9 × 105, which is larger than that of previous synthetic wavelength DH. Such a wide axial dynamic range capability will further expand the application field of DH for large objects with meter dimensions
    corecore